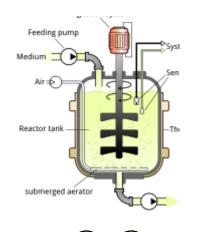
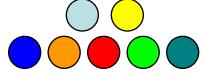


### **Overview**

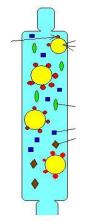


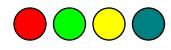

- Introduction HCP, detection by ELISA
- Comparison of commercially available CHO kits
- Assessment of suitability of a commercial kit
- Conformational coverage determination




## **Challenges for HCP assays**




### Manufacturing




Host cell Proteins (HCP)



#### Purification

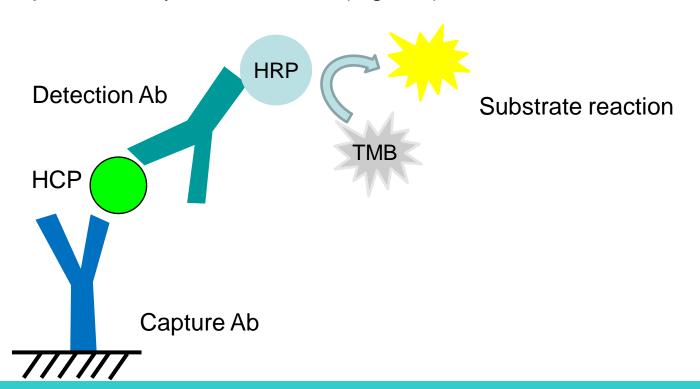




Drug substance (DS)






- Many different HCP and high diversity
- Different amounts
- Sensitive assay (ICH Q6B)



### **HCP** determination



- ELISA is current method of choice
- Quantitation (high sensitivity) possible
- Complemented by other methods (e.g. MS)





### HCP ELISA



Development

Phase 1

Phase 2

Phase 3

Commercial

Commercial kits

Process/product-spec.

### Platform assay

- Commercial kits
  - Readily available
  - Dependence on supplier
  - Not process-specific
  - Different suppliers available



### **Overview**



- Introduction HCP, Detection by ELISA
- Comparison of commercially available kits
- Assessment of suitability of a commercial kit
- Conformational coverage determination



# Comparison of commercially available kits



- Tested kits:
  - Cygnus 2G (CM015)
  - Cygnus 3G (F550)
  - Krishgen BioSystems (KBBP03)
  - Alpha Diagnostic International (800-140-CHO)
  - Array Bridge (AB00101)
  - 4x Biogenes (Enhanced generic CHO/360-HCP ELISA kits A-D)
- Comparison with process-specific CHO HCP ELISA



# Comparison of commercially available kits



- Tested kits:
  - Cygnus 2G (CM015)
  - Cygnus 3G (F550)
  - Krishgen BioSystems (KBBP03)
  - Alpha Diagnostic International (800-140-CHO)
  - Array Bridge (AB00101)
  - Biogenes (Enhanced generic CHO/360-HCP ELISA kits A-D)
- Comparison with process-specific CHO HCP ELISA

Comparison of different commercially available CHO kits with a product/processspecific HCP EIA

- 1) Amount HCP in 3 DS (therapeutic antibodies, produced by CHO)
- 2) Recovery of 3 product-specific Mock CHO HCP (indication for coverage)
- 3) Assess dilutional linearity (DS)



# HCP content of DS using different kits



|                  | HCP content (ppm) |      |        |
|------------------|-------------------|------|--------|
|                  | DS1               | DS2  | DS3    |
| Cygnus 2G        | 0*                | 0*   | 0.3    |
| Cygnus 3G        | 1.8               | 9.4  | 0.9    |
| Alpha Diagnostic | 2.3               | 9.6  | 1.4    |
| Array Bridge     | 15.6              | 19.5 | 10.8   |
| Krishgen         | 0*                | 0*   | 2.2    |
| Biogenes A       | 2.3               | 1.4  | 0.4    |
| Biogenes B       | 0.7               | 1.3  | 0.2    |
| Biogenes C       | 1.8               | 1.0  | 0.5    |
| Biogenes D       | 1.5               | 1.8  | 0.5    |
| DS2-spec         | 2.8               | 2.7  | 1.7    |
| Range            | 0-16              | 0-20 | 0.2-11 |
| *: below LOQ     |                   |      |        |

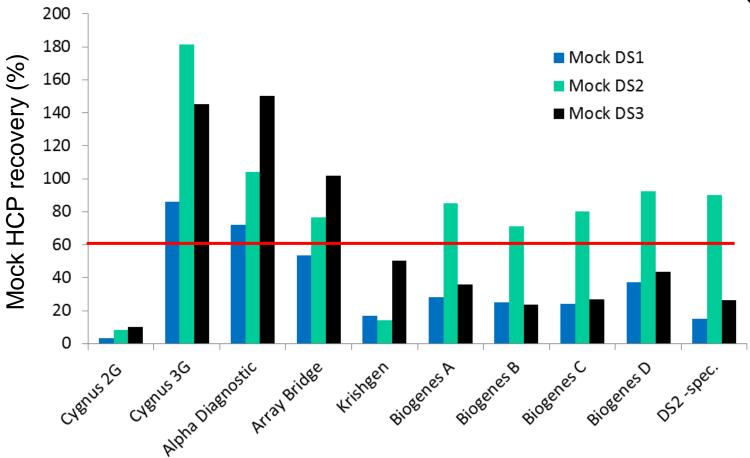
Measured HCP content is dependent on assay



# HCP content of DS using different kits



| =>       |
|----------|
| $\neg v$ |

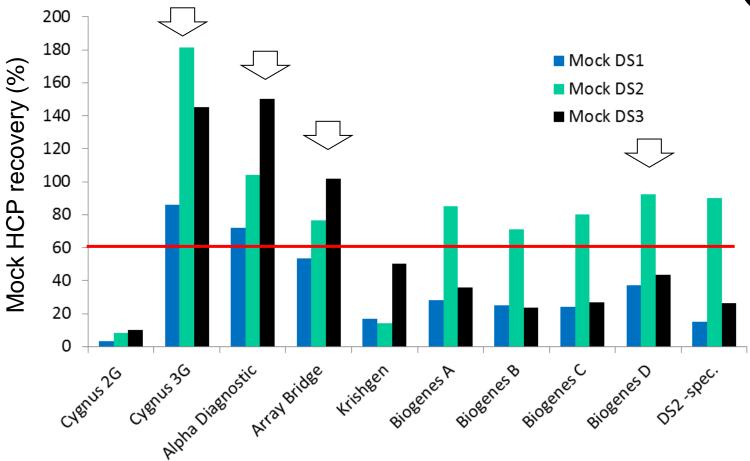

|                  | HCP content (ppm) |      |        |
|------------------|-------------------|------|--------|
|                  | DS1               | DS2  | DS3    |
| Cygnus 2G        | 0*                | 0*   | 0.3    |
| Cygnus 3G        | 1.8               | 9.4  | 0.9    |
| Alpha Diagnostic | 2.3               | 9.6  | 1.4    |
| Array Bridge     | 15.6              | 19.5 | 10.8   |
| Krishgen         | 0*                | 0*   | 2.2    |
| Biogenes A       | 2.3               | 1.4  | 0.4    |
| Biogenes B       | 0.7               | 1.3  | 0.2    |
| Biogenes C       | 1.8               | 1.0  | 0.5    |
| Biogenes D       | 1.5               | 1.8  | 0.5    |
| DS2-spec         | 2.8               | 2.7  | 1.7    |
| Range            | 0-16              | 0-20 | 0.2-11 |
| *: below LOQ     |                   |      |        |

Measured HCP content is dependent on assay



# Recognition of Mock HCP in kits and process-specific HCP EIA



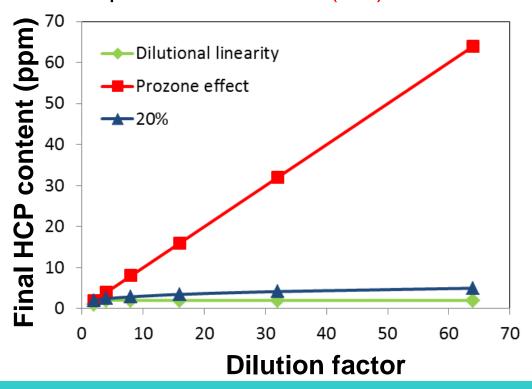



Different recognition patterns



# Recognition of Mock HCP in kits and process-specific HCP EIA

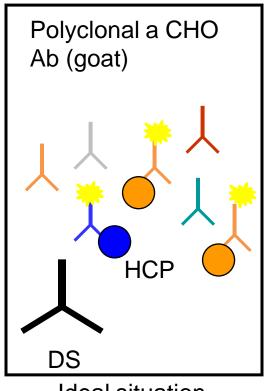




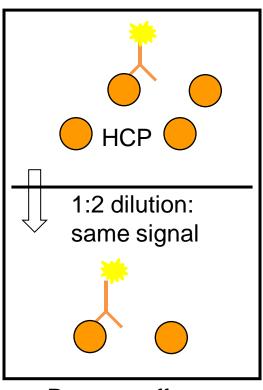

- Different recognition patterns
- Assays with high Mock HCP recovery lead to higher HCP values



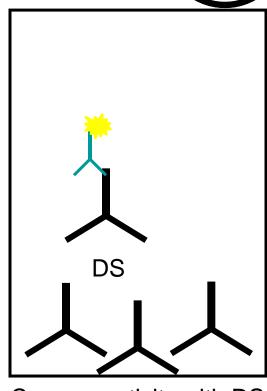
## **Assessment of dilutional linearity**


- Test 1 sample in different dilutions, assess HCP content in sample
- Dilutional linearity: similar values are generated for different dilutions (green)
- Prozone effect: duplication of values (red)






# Possible explanations for lack of dilutional linearity



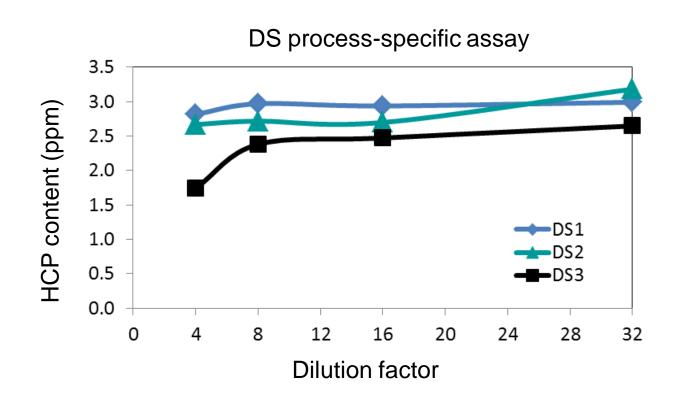



Ideal situation



Prozone effect: excess HCP



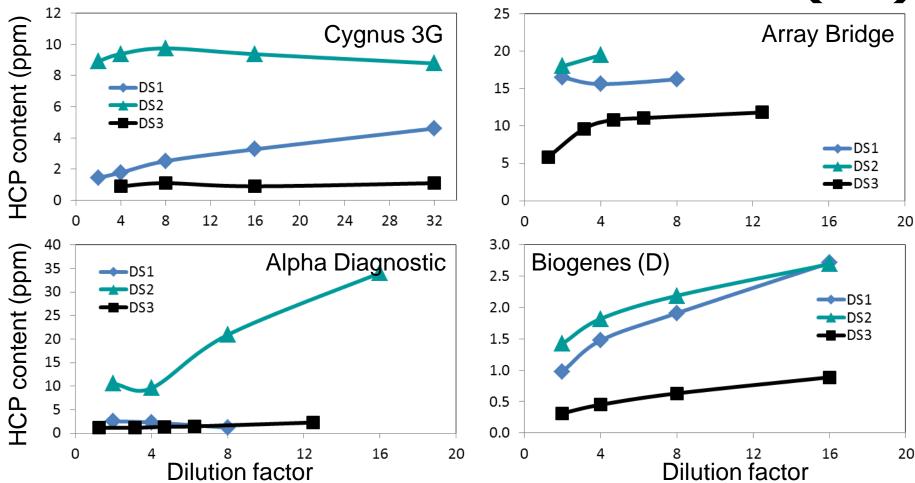

Cross-reactivity with DS

Lack of dilutional linearity (DL) often due to limited availability of Ab



# Assessment of dilutional linearity (DS2-specific assay)






DS process-specific assay displays dilutional linearity for all tested DS



## Assessment of dilutional linearity (kits)





Dilutional linearity is dependent on the combination of DS and kit



## Conclusions commercial HCP ELISAs

- DY
- Kits can be suitable tools for HCP detection until platform/processspecific assays are developed
  - Suitability should be assessed
  - Different kits seem to be suitable for different DS

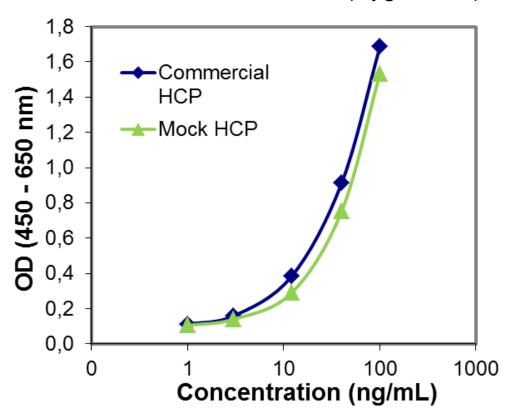
|                  | Mock HCP<br>recovery<br>above 60% | HCP content above QL | Dilutional<br>linearity | Total score |
|------------------|-----------------------------------|----------------------|-------------------------|-------------|
| Cygnus 2G        | 0                                 | 1                    | 1                       | 2           |
| Cygnus 3G        | 3                                 | 3                    | 2                       | 8           |
| Alpha Diagnostic | 3                                 | 3                    | 2                       | 8           |
| Array Bridge     | 2                                 | 3                    | 2.5                     | 7.5         |
| Krishgen         | 0                                 | 1                    | 1                       | 2           |
| Biogenes A       | 1                                 | 3                    | 2                       | 6           |
| Biogenes B       | 1                                 | 3                    | 1                       | 5           |
| Biogenes C       | 1                                 | 3                    | 2                       | 6           |
| Biogenes D       | 1                                 | 3                    | 1                       | 5           |
| DS2-spec         | 1                                 | 3                    | 3                       | 7           |

- 1 point per DS
- Max 3 points per criteria



### Overview



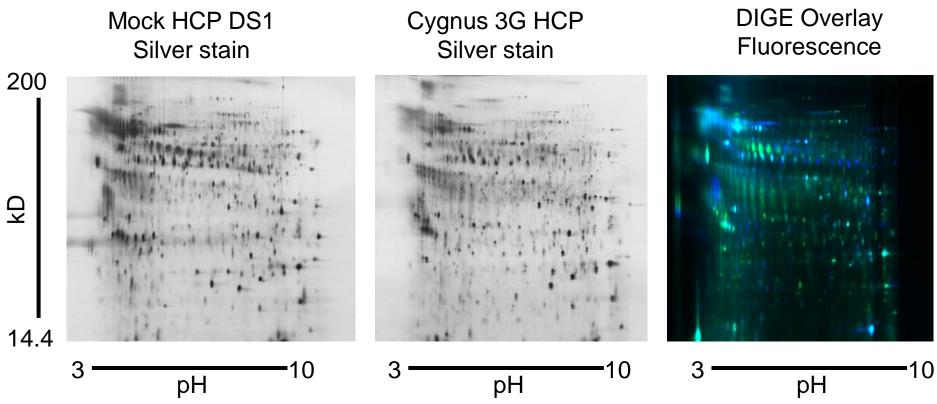

- Introduction HCP, Detection by ELISA
- Comparison of commercially available kits
- Assessment of suitability of a commercial kit (Cygnus 3G kit for DS1)
  - Around 90% recovery of Mock DS1 HCP
- Conformational coverage determination



# Comparison of Cygnus 3G and processspec. HCP in Cygnus 3G kit



Commercial HCP ELISA (Cygnus 3G)

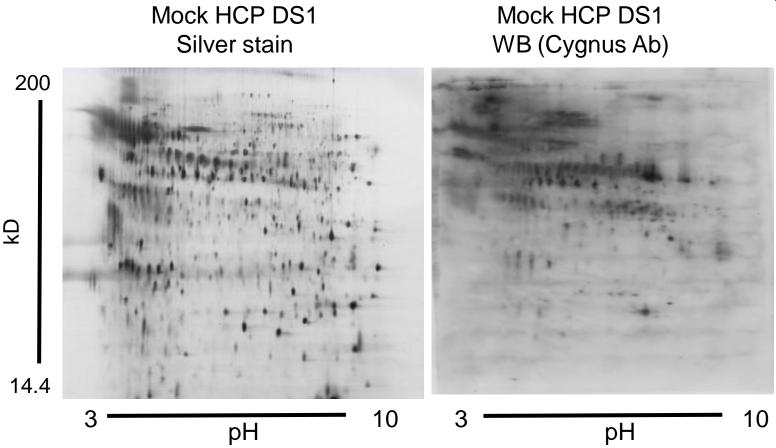



DS Mock HCP look similar to commercial HCP in Cygnus 3G ELISA kit



# Comparison 3G and process-spec. HCP






 Differential gel electrophoresis (DIGE) quantitation: around 95% overlapping spots between process-spec. Mock HCP and commercial HCP



## Coverage assessment 3G Ab





Coverage of commercial anti-HCP in 2D-GE: around 45%



### Overview



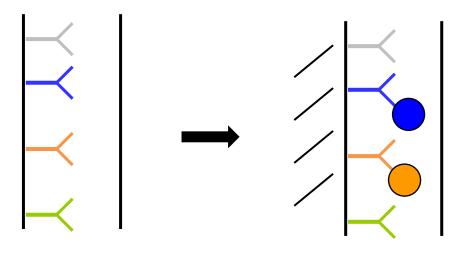
- Introduction HCP, Detection by ELISA
- Comparison of commercially available kits
- Assessment of suitability of a commercial kit
- Conformational coverage determination



## **Coverage determination**



- 2D gel electrophoresis is method of choice (silver stain, Western Blotting)
- Limitation: detection of linear epitopes
- Assess coverage in dilution
- Depletion assay to assess conformational coverage




## **Outline depletion assay**

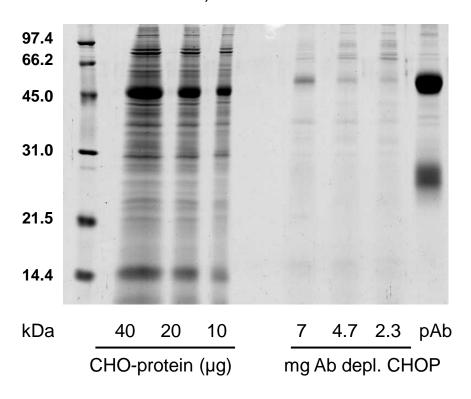


Couple pAb to Prot G/NHS sepharose

Apply Mock CHO proteins
Proteins recognised by pAB will bind



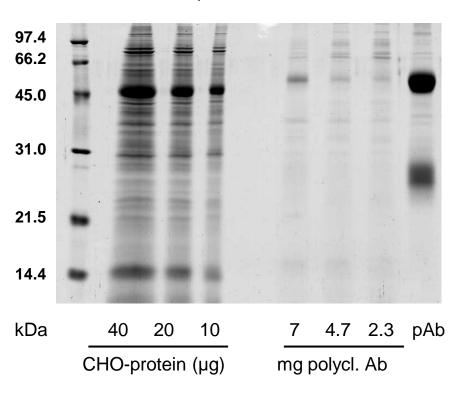


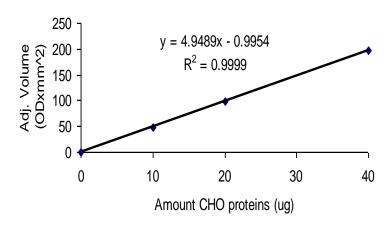

Collect flow-through
Analyze with
SDS-PAGE or LC-MS



# Coverage determination by depletion assay




#### SDS-PAGE, Gelcode Blue Stain




# Example: Coverage determination by depletion assay



#### SDS-PAGE, Gelcode Blue Stain





| aCHO lgG | CHOP | Adj Volume            | Recovery | Recovery |
|----------|------|-----------------------|----------|----------|
| (mg)     | (mg) | (ODxmm <sup>2</sup> ) | (ug)     | (%)      |
| 2.33     | 0.1  | 5.95                  | 1.4      | 2.8      |
| 4.66     | 0.1  | 6.4                   | 1.5      | 3.0      |
| 7.00     | 0.1  | 7.2                   | 1.7      | 3.3      |

Around 97% coverage of rabbit pAb for conformational epitopes



## **Summary and conclusions**



- Kits can be suitable tools for HCP detection until platform/processspecific assays are developed
  - Suitability should be assessed
    - Comparison of HCP
    - Dilutional linearity
    - Coverage assessment recommended
- Lack of dilutional linearity should be further investigated and might be due to cross-reactivity with DS or scarcity of individual Ab
- Recommendation to harmonize coverage determination by 2D-GE and expand coverage assessment to methods detecting conformational coverage



## Acknowledgements



#### Analytical Development & Validation, MSD Oss, NL

- Corné Stroop Rezie te Poele
- Bert v. d. Weijer
- Rik Nievergeld
- Danny Lagarde
- Sjuul Hegger
- Loes Schobers

#### Process Development & Commercialization, MSD Oss, NL

- Rick Schreurs
- Nora Renders
- Manon Bruisten

#### **Extended Characterization BioChemical, MSD Oss, NL**

- Eef Dirksen

- Wilbert Deceunink

- Wendy Pluk

#### **Extended Characterization, Merck Kenilworth, USA**

- Alex Ambrogelli
- Shara Dellatore
- Dennis Driscoll
- Daisy Richardson

